
Quantum kinematics and boson ladder operators of nonAbelian noncompact Lie groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 6285

(http://iopscience.iop.org/0305-4470/26/22/028)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


.I. Phys. A Math. Gen. 26 (1993) 6285-6301. Printed in the UK 

Quantum kinematics and boson ladder operators of 
non-Abelian non-compact Lie groups 

J Krause 
Facultad de Fisica, Pontilicia Univenidad Catdlicade Chile, Casilla 306, Santiago 22, Chile 

Received 5 January 1993 

Absbact. Quantum kinematics is revisited, as a graup-theoretic quantization procedure 
within the regular representation of non-Abelian non-compact r-dimensional Lie groups. 
The set of I basic quantum-kinematic invariant operators is enhibited; generalized Heisen- 
berg commutation relations and the structure of the closed generalized Weyl-Heisenberg 
algebra of the quantized group are also discusse$ Then it is shown how these structures 
yield a complete set of I ‘annihilation’ and ‘creation’ boson operators, which give h e  to 
several intrinsic (i.e. embedded) Lie algebras, obtained in the standard way, within the 
quantized gmup model. As a miscellaneous example, these features are discussed within 
the quantum-kinematic theory of the Poincar6 gmup eS(1, I), and some interesting 
possibilitiesfor elementaryparticle theoryareconjectured in thelight aftheattained results. 

1. Introduction 

In a previous paper a formalism of non-Abelian group quantization was discussed, 
within the regular representation of non-compact Lie groups (Krause 1991, henceforth 
referred to as paper I). It was shown that all such r-dimensional groups have a set of 
r basic quantum-kinematic invariant operators, which substantially differ from the 
Casimirinvariant operators of the traditional theory of Lie algebras and their enveloping 
algebras. The relation of the conventional invariants with the new quantum-kinematic 
invariants was also examined in that paper. 

The importance of Lie group invariant operators is well known, both from the 
mathematical point of view as well as for their physical applications. However, let us 
here only remark that some Lie groups have no Casimir operator, sensu stricto; other 
Lie groups have only transcendental invariant operators that do not belong to the 
enveloping algebra. Moreover, it also happens that some Lie groups have no traditional 
invariant operators at all. 

The novelty introduced by our study is immediate, if one observes that hitherto all 
invariant operators of Lie group theory have been defined as functions of the generators 
that commute with all the generators of a given representation (cf Barut and Raczka 
1977). For the sake of briefness we here refer to this current notion  as^ the traditional 
invariants of Lie group theory. 

As was shown in an earlier paper, one arrives at completely different results if one 
uses the group quantization method (Krause 1985), for then it tums out that every 
r-dimensional Lie group has a set of r basic quantum-kinematic invariant operators, 
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which are defined as functions of the generators and of the generalized position 
operators (cf below) that commute with all the generators. Moreover, once a Lie group 
has been ‘quantized’, its quantum-kincmatic invariant operators arise in a rather natural 
manner (even in those extreme cases where the group has no traditional invariant at 
all). In paper I we prove this fact for a special kind of non-compact Lie group. Though 
this feature is valid for all kinds of Lie groups (whether compact or non-compact), 
quantum kinematics of compact Lie groups, in general, sets a rather difficult issue. 
(The consideration of the general formalism of quantum kinematics for compact Lie 
groups is postponed to some forthcoming papers.) As for the physical motivation of 
non-Abelian quantum kinematics the reader is referred to previous work on this subject 
and to the literature quoted therein. 

In this paper this subject is studied further. In particular, here a new kind of 
quantum-kinematic ‘annihilation’ and ‘creation’ boson-operators associated with non- 
Abelian non-compact Lie groups are introduced, which may have some interesting 
physical applications. 

As a matter of fact, we here recall that quantum-kinematic ladder operators have 
already been used, rather successfully, in papers devoted to the quantum kinematic 
theory of the simple harmonic oscillator (Krause 1986) and to Galilean quantum 
kinematics (Krause 1988), where they played a prominent role. However, a general 
theory for these boson operators of non-Abelian non-compact Lie groups was still 
missing in the quantum kinematic formalism. This paper is devoted to filling this gap. 

It is indeed well known that several physically relevant Lie algebras can arise very 
naturally as bilinear products of boson annihilation and creation operators (Lipkin 
1966). Nonetheless, it is interesting to remark that in the present theory, once a 
non-compact (non-Abelian) Lie group has been quantized, the Lie algebras that may 
be generated by taking bilinear products of the kinematic boson operators appear as 
embedded in the quantized structure of the chosen group. They are intrinsic to this 
structure, and therefore no direct nor semidirect products are necessary to bring them 
into the fore. So they may play an important role in the classification of multiplets 
within the quantum kinematic models afforded by the quantization of the group (Krause 
1986, 1988). This fact makes the present theory particularly interesting. 

Although these ladder operators belong to the generalized enveloping quantum- 
kinematic algebra of the group (Krause 1993), this notion will not be used in this 
paper, because one can introduce the ladder operators of noncompact Lie groups in 
a direct fashion, quite independent of this new (i.e. unfamiliar) general notion. 

The organization of this paper is as follows. Section 2 contains a rather sketchy 
review of the group quantization procedure and includes a discussion of some features 
of the basic quantum-kinematic invariant operators and of the (closed) quantum- 
kinematic algebra of non-compact Lie groups, as will be needed in the sequel. Next, 
in section 3, we apply these formalisms in order to build the complete set of r 
quantum-kinematic boson ladder operators, and we briefly discuss their main proper- 
ties. Finally, section 4 includes a miscellaneous instance of a physical application, by 
calculating the three boson ladder operators of the Poincar-5 group Pl(1, I). Then, by 
considering only two of them, the Lie algebra of SU(1,l) is obtained as an example 
of a Lorentz invariant internal structure, within the PI( 1,l)  quantum kinematic theory. 
Although the aim of this paper is purely ‘instrumental’ for mathematical physics, 
concerning a new group-theoretic method of quantization, we end up in section 5 
presenting a very general conjecture on some physical possibilities of the quantum- 
kinematic approach to the Poincark group in the realm of elementary particle physics. 
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2. Non-Abelian quantum kinematics revisited 

Here some of the main concepts leading to group quantization and non-Abelian 
quantum kinematics of non-compact Lie groups are repeated, because this new formal- 
ism is not known to most physicists. It is the intention to describe here (without proof) 
only those features which are relevant for the discussion of the quantum kinematic 
ladder operators. 

The notation used throughout this paper is the same as paper I. Henceforth, G 
denotes a non-compact, connected and simply connected, r-dimensional non-Abelian 
Lie group (as, for instance, the universal covering group of a non-compact Lie group). 
Furthermore, we shall assume that there exists a coordinate patch q = (q', . . . , q') 
which covers the whole group manifold M ( G )  and maintains everywhere a one-to-one 
correspondence with the elements of G, i.e. the coordinates qa, Q = 1,. . . , r are real 
and provide a set of r essential parameters of G. This is a strong condition, to be sure. 
However, most Lie groups of physical interest are of a type known as 'linear Lie group', 
in the sense that they have at least one faithful finite-dimensional representation. It is 
well known that the whole of a connected linear Lie group of dimension r can be 
parametrized by r real numbers q', . . . , g', which form a connected set in R'. Of course, 
there is no requirement in general that this global parametrization of G be faithful. 
Nevertheless, there are many instances of non-compact, connected and simply con- 
nected linear Lie groups (of physical relevance) for which the global parametrization 
provides a one-to-one faithful mapping. For the sake of simplicity, this paper deal- 
exclusively with Lie groups which satisfy this condition. 

In the following 4 = 4 ( q )  denotes that point in M ( G )  which labels the inverse 
element corresponding to g, and e = (e', . . . , e') E M ( G )  labels the identity element. 
Of course, M ( G )  carries an analytic mapping, g : M ( G )  x M ( G )  + M ( G ) ,  that is 
endowed with the group property of 0. Hence, in this parametrization one has a well 
defined set of r group-multiplication functions, g'(q'; q )  = 4''- E M ( G ) ,  which realize 
thegroup law in M ( G ) .  (As agoodgeneral reference forthese details, see Racah 1965.) 

- 

One defines Lie's (right and left) vector fields as follows: 

x.(d = R%I)J~ ya(q) L%q)Jb (2.1) 

where Rf: and Lf: are the (right and left) transport matrices for contravariant vectors 
in M ( G )  which are obtained from g"(q'; q )  in the usual 'classical' fashion; i.e. 

Lie algebra 

R:(q)=Jbg b (4'; q)],.=., and L:(q) =Jbgb(q; g')14,-E. The Lie operators satisfy the 

[xo(q) ,  x b ( q ) l  = f :bxc (q )  [ya(q) ,  Y b ( q f l  =-f:byc(q) 

[xa(q), Yb(q)I=O (2.2) 

where the structure constants are given by f:b = R;,,(e)-R&(e). 
In the forthcoming formalism we also need the inverse transport matrices in M ( G ) ,  

which are defined by R t ( q )  = J!,(q'; 4)/4.=q, aTd l ! ( q )  =&gbb(q; q')]4.=4. Clearly, one 
has: Rt(e)=L:(e)=6:, andE(q)R: (q )=L: (q )L t (q )=S , ) .  Asamatterof fact,the 
following 'mixed' transport matrices in M ( G )  correspond to the adjoint representation 
Ga of G (cf paper I): 

A.b(q)= RXg)E%q) '439)  = LXdEt(9) (2.3) 
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since one has 

and 

A:(e+ S q )  = St + GqyL. (2.5) 
Next, in order to quantize the group G let us associate the essential parameters qa 

with a set of r commuting Hermitian operators Q", which act within the carrier space 
of the regular representation and may be interpreted as generalized 'position' operators 
of the group manifold (Krause 1985). Thus, within the common (rigged) Hilbert space 
%(G) that carries both (left and right) regular representations (paper I) one defines 
the following spectral integrals over the group manifold: 

Qa=I d p L ( q ) h ) d ( q l L = j  dPR(4)14)nqU(41R (2.6) 

i.e. one sets Q" = Q(I= QS.  The Qs are generalized position operators of M(G), acting 
in %(G); in fact, one has Qat = Q', [ Q", Qb] = 0, and 

QQ14)r= q%)r Q a l q ) R  = q'1q)R. (2.7) 

Hence, the Qs provide a complete set of commuting Hermitian operators in %(G). 
Here the Hurwitz invariant measures have been used on M(G):  dpL(q)=poE(q) d'q, 
and dpR(q)=pol?(q)d'q, where z(q)=det[Lt(q)] and l?(q)=det[l?t(q)]. (In order 
to simplify the notation, it is assumed that p L  = pR = po,  but this choice is not strictly 
necessary.) (Cf the appendix in paper I for a unified formalism of the two regular 
representations which shall be used as theoretical frame in what follows.) 

In paper I it was shown how the set of r basic quantum-kinematic invariant operators 
arise as a consequence of this group quantization approach to non-Abelian quantum 
kinematics. In fact, they correspond essentially to the generators of the right (left) 
regular representation acting as invariant operators within the left (right) regular 
representation of G. This feature is possible if one 'quantizes' the group (i.e. if+- Q"), 
because in this fashion, and only in this fashion, the basic quantum-kinematic invariant 
operators appear as linear combinations of the generators, whose matrix coefficients 
are functions of the generalized position operators Q" of G. Indeed, it was found that 
in the left regular representation (for instance) the invariant operators are given by 

(2.8) 
where the Ls are the generators, A!(q) =Ab,(q) are the entries of the inverse matrix 
of the adjoint representation G,,, of G, and f t b  denotes a contraction of the structure 
constants. Indeed, from the (left) generalized Heisenberg commutation relations associ- 
ated with G, namely (cf Krause 1985) 

Re( Q; L) = Rz( Q; L) = A:( Q)Lb 

CQ4 Qbl = O  (2.9) 
[Q", Lbl=ifiR%Q) , (2.10) 

[La, Lbl=-ifif:bLc (2.11) 

[MQ; L), 4 1 = 0  (2.12) 

and from the (left) Lie algebra 

it follows (paper I) 

a, 6 = 1, . . . , r. 
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In (2.10), we have defmed 

(2.13) 

and (as was already said) the L,s are the generators of the left regular representation; 
i.e. 

UL(e+8q)=I-  - &fL., (2.14) 

(2.15) 
(3 

L,lq)L = ifiX.(q)ldL. 

One next obtains the (closed) quantum-kinematic algebras of G, since from (2.10) 

WQ), L,J=ihX,(Q)F(Q) (2.16) 

one has 

- where X.(q)F(q) = R;(q)qb(4) ,  and therefore X,(q)Ai(q) =f&AXq) yields immedi- 
ately 

CA;(Q), L l=  ifif2AXQ). (2.17) 

In the same way, from Y,(q)Az(q) =&A,d(4) (cf also (3.6)), one gets 

[AZQ), Ra1=if i fL43Q) (2.18) 

where the Rs denote the generators of the right regular representation (that is, the 
kinematic invariants (2.8) of the left regular representation). Thus we see how non- 
Abelian quantum-kinematic commutation relations may be closed separately to form 
two Jinitedimensional Lie algebras, which are committed in an interesting fashion 
with the quantized version of the matrices carrying the adjoint representation of the 
group. Equations (2.11) and (2.17) exhibit the left quantum kinematic algebra of G. 
(One obtains the right quantum kinematic algebra of G in a similar way.) 

This finite closed structure embeds G into some larger Lie group GQK, the quantum 
kinematic group of G which seems worthy of further investigation. One can identify, 
for instance, GQK with the universal covering group associated to the quantum kinem- 
atic algebra of G. A few interesting comments concerning this structure are not out of 
place here. The (left) quantum-kinematic algebra of G yields the Lie algebra ggi of 
the (left) quantum kinematic group GgA, whose generators belong to the linear space 
definedbyLuA={L.,Ai(Q); a, b , c = l ,  ..., r}.Now,giventhat[L,L]cL,[A,L]c 
A, [A, A] = {O},  we note that the Lie algebra of G is a subalgebra of g$i, while 
A = {Ai( Q)Q, b, = 1,. . . , r }  corresponds to a commutative ideal of g& . Hence, for the 
kind of Lie groups considered in this paper the Lie algebra g g i  is neither simple nor 
semisimple. In order to obtain the dimensions of gg', one also has to recall that not 
all the adjoint matrix-operators AE(Q) are independent, because they have to satisfy 
the following r linear constraints: 

f % X Q )  =f& (2.19) 

in general, and furthermore, in the applications, it may happen that some entries of 
the adjoint matrix are zeroth. So gg': can be (at most) a r2-dimensional Lie algebra. 
No stringent extra conditions, nor restrictions, on G appear to be necessary in this 
mathematical construct. 

~ 
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For proofs and more details concerning these results, the reader is referred to paper 
I. The main features concerning our interest here are shown in equations (2.8) and 
(2.12). Similar results hold for the right regular representation. Henceforth, for the 
sake of concreteness, let us work only within the left regular representation of G. 

3. Canonical quantum-kinematic ladder operators 

As an interesting application of the general formalism of quantum kinematics let us 
now consider the possibility of having a set of r first-order linear operators of the 
general form 

&(Q; L) =A.(C?) +i&(Q)& (3 .1~)  

8 ( Q ;  L) = A.(Q) -iLbBb.(Q) (3.lb) 

endowed with the following fundamental commutation properties: 

[&, & ] = O  [&, = sob (3.2) 

for U, b, = 1, . . . , r. It will be proven here that such a set of boson ladder operators 
exists, notwithstanding the fact that G is a non-Abelian Lie group (of the special 
non-compact kind introduced in section 2). Furthermore, since A,(q) and B t ( q )  must 
be real regular functions of the qs everywhere on M ( G ) ,  it will also be proven that 
these operators are unique (within the addition of arbitrary constant multiples of the 
identity). Moreover, one can calculate them explicitly for any given non-compact Lie 
group of the assumed kind. In this way, one gets a complete set of non-Hermitian 
ladder operators acting in the Hilbert space that carries the regular representation of 
G, whose eigenvectors can be found, quite generally, as a system of special functions 
defined in M ( G ) .  

First, we show the structure of the problem at hand. Taking into account the 
generalized Heisenberg commutation relations associated with G (cf (2.9)-(2.11)), as 
well as the definitions of Lie's vector fields acting on M ( G )  (given in (2.1)), a 
straightforward calculation yields the following system of coupled nonlinear differential 
equations for the coefficients of the ladder operators: 

B:(q)X,(q)Ab(S)-B;(S)x,(q)%(q) = o  (3.3) 

B!(q)Xd(q)B;(q) -B~(q)Xd(q)B:(n)+~~~B~(q)B~(q) = o  (3.4) 

BXq)Xc(q)Ab(q) +BXq)Xc(q)Aa(d - hB:(4)X,(q)xd(q)B~(q)  = A-'& (3.5) 
for all q E M (  G). These are necessary and sufficient conditions forthe operators defined 
in (3.1) to he endowed with the desired commutation relations (i.e. (3.2)). Of course, 
we are interested only in those solutions A,(q) and B:(q) that are regular everywhere 
on the group manifold, so that I($II?.I$)l=l(~lafl$)i remain finite for all ($)E Z(G).  

Now, in order to solve this rather formidable problem, one uses an indirect method, 
assuming any kind of admissible essential parameters qn for G in M (  G). Furthermore, 
let us first present the set of generalized canonical ladder operators of G in terms of 
the invariant operators R. (instead of using the generators Lo, as above); i.e. let us 
calculate the operators &(Q; R), say. Then we shall prove that &(Q, R) = &(Q; L) 
holds, for all essential parametrizations of G. 
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To this end, we recall the generalized Heisenberg commutation relations for the 

(3.6) 

As we know, within the 'left' working frame, the Rs are given in (2.8) and the entries 
L;(Q) have the spectral representations 

generators of the right regular representation of G (paper I): 

IQ', %I = ihLi( Q). 

" 

(3.7) 

quite generally. Thus, if we d e b e  the Hermitian operators 

pa(Q; R) = pf.(C?; R) =f{L:(Q)Rb + R&(Q)} =4[E%Q), &I+ (3.9) 

we can write down the standard Heisenberg commutation relations 

[ Q", Pb] =ifzag (3.10) 

even if the parameters are not canonical and notwithstanding the fact that the non- 
compact G is a non-Abelian Lie group. 

It is well known that the only way for (3.10) to be consistent with the Jacobi identity 
is that the Ps commute among themeIves (since the Qs commute, cf (2.9)). In the 
present formalism, this requirement constitutes a challenge that must be proved. In 
order to tackle this problem let us first use 

Yb(4)L:(4)=[ln R(4)I.a (3.11) 

(which can be proved in a direct manner) so that the Ps can be cast in the following 
form: 

P, = L;(Q)R~ -$ih[ln R ( Q ) ] . ~ .  (3.12) 

(In order to help the reader at this point, note that (3.11), as well as Xb(4)R.b(4)= 
[In L(q)]+, hold quite generally, for they are immediate consequences of the formula 
Xb(q)Lz(q)= Y,(q)Rt:(q) that follows from the group property of g"(q'; 4).) Then, 
since 



6292 J Krause 

i.e. one has 

as required. 

operators 

[pc~,pbl=o~ (3.17) 

In this way, from equations (3.10) and (3.12), one defines the generalized ladder 

(3.18a) &(Q; R )  '3 [Q"+fyb(Q)~:(Q)I+hLan(Q)Rb] i 

(3.18b) 

'C 

* C  

&Q; R)=E([Q'-$yb(Q)E:(Q)]  1 -+E:(Q)Rb] 

which certainly satisfy the commutation relations (3.2). 
We now easily prove that if one defines the following operators 

&(Q; L)=- Jz [Q"+$xb(Q)E:(Q)l+i E:(Q)Lb] (3.19a) 

(3.19b) n^b(Q; L ) = -  Jz ' C  [Q"-$xb(Q)R:(Q)l- i  R b ( Q ) 4 }  

maintaining the same q-parametrization of G, then one gets 

&(Q; L) = $(Q; R) (3.20) 

and furthermore a^L(Q; L) is indeed the Hermitian adjoint of &(Q; L), for a = 1 , .  . . , r. 
To this end, all one needs to prove is that 

(3.21) 

This is the case in fact, becausefib =f&x:(q) holds for GA (see paper I), and therefore 
(2.8) can be written in the forms 

& =X:(Q)(Lb -%fifk) (Lb +$ififk)A:(Q) (3.22) 

thus, using the definitions (2.3), equation (3.21) follows. ' h i s  proves (3.20). Hence, it 
does not matter whether one uses the left or the right generators of the regular 
representation of G to define these canonical ladder operators of the group. 

The task of obtaining the general form of the simultaneous eigenvectors In), as well 
as the generalized coherent states lz), associated with these canonical 'annihilation' 
and 'creation' boson operators of G (in particular, the discussion of their possible 
connections (if any) with Perelomov's generalized coherent states (Perelomov 1986)) 
will be considered eisewhere (Krause 1993). 

The several (compact and non-compact) Lie algebras one may obtain by means of 
sets of bilinear combinations { tatb,  Z:ib; , ,  Sza':} of r boson ladder operators are well 
known (Lipkin 1966, Barut and Raczka 1977). However, as was already mentioned in 
the Introduction, it is here underlined that these algebras are related with G in an 
intrinsic fashion, and therefore no direct nor semidirect product SU x G (say) is required 
in order to obtain them, because they stem from the quantization of G. Thus, 
if G is a physically relevant Lie group, they may play an interesting role. (See, for 
instance, Krause 1986, 1988.) 

E:(Q)Rb +RbE:(Qf =R:(Q)Lb + LbE:(Q). 

In this fashion, we have found that 

(3.23) 1 -1 - b  A ( )--{qa2++xb(q)E:(q)} 4 q  -Jz B:(q) =z f i  R . ( d  
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yield the desired solution to equations (3.3)-(3.5). (One can prove this result quite 
generally, within any admissible parametrization of G.) Note that, for any given 
I+)E%’(G), one has 

($/&I$) =$I dP=(q)+%q){qi +aXb(q)Rk(q)l + @tiq)Xb(q)}+L(q) 

($@al+) =E I ddq)+LE(q){q” -t[X&)@%q)l- E%dXb(q)}+dq) 

(3.24a) 

(3.24b) 

where one defines ajL(q) = =(ql+). The fact that these ladder operators are the only 
admissible solution to equations (3.3)-(3.9, follows because the As and the Bs must 
he regular everywhere (in particular, at q = 0), and because consistency demands 
(+1&]+)*=(+1;61+}. In this sense the boson ladder operators for G shown in (3.18) 
or (3.19) are essentially the unique solution of the problem. 

Finally, an obvious (albeit important) fact is underlined. In order for the quantum 
kinematic boson operator to have the right dimensions, one should write 

1 

) (3.25) 

instead of (3.18), where the Ps are given in (3.12). The As are real c-numbers, with 
chosen dimensions such that the 6s are dimensionless (i.e. purely numerical) operators, 
as they must be. This remark is important because in the applications, on physical 
grounds, one may interpret {Aa, a = 1,. . . , r} as a set of r phenomenological parameters 
which specify some properties of a physical system (like fixed Compton wavelengths, 
for instance, or otherwise, depending on the dimensions or units of the Qs). Neverthe- 
less, since in this paper we shall not work out a concrete specilic model of a system, 
here we set A. = 1(1< a S r )  for the sake of simplicity. 

4. Ladder operators of the Poiucari group in two-dimeusional spacetime 

As an interesting application of the formalism of quantum-kinematic ladder operators, 
let us consider the group PI(1,l) of Poincari transformations in two-dimensional 
Minkowski spacetime: 

where y(qz)  = [l -(qz)z]-1’2. In the present parametrization,’ the group manifold is 
given by M = {-CO< go<+,, --CO< gl< +?, -1 <$<+I}, and e = (0, 0,O).  the^ 
group law reads 

q”=gO(q’; g) = q’O+y(q‘*)(qO-q’Zq~) 

q”1= g’(q’; g) = q’1+ y(g‘Z)(q’- q ’Zg0)  

q”= gZ(q‘; q )  = (q’2+ g2)(1+ g‘Zq2)-1. 

(4.2) 

Hence, one has 
0 0  Y -Yq2 0 

R % q ) = [ - i ,  -4 l o  Y 0.1 L!(d=[-?’  0.1 (4.3) 
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wherefrom one gets the familiar generators in M ( 9 : )  

which satisfy the well known Lie algebra 

and moreover 

1x0, ybl=o a, b =0,1,2. (4.8) 

Let us thsn brieflyreview some features of the quantum kinematictheory of 91(1, l), 
which wil l  be needed for obtaining the desired ladder operators. The group 91(1,1) 
is unimodular (i.e. R(q)= L(q)= y-'), so one defines the (left and right) Hurwitz 
measure: 

(4.9) d d q )  = YoY2(q2) dqo dq' dqz. 

Hence, the position operators of 9; are given by 

for a = 0, 1,2, where 

(qJO, q',, qOlqO, q1. q2)= ~ L 0 1 Y - 2 ( q Z ) ~ ( q r 0 - q o ) ~ ( q ' 1 - ~ 1 ) S ( q 0 - ~ 2 f  (4.11) 

and where (in this particular case) we have defined 14'. ql,  q2)L=lqo,,q1, 4% = 
14'. q l ,  4'). once for all. In fact, the adjoint represention is defined by 

Y -Yqz 
Ab( q ) -  -[ -Yq q l z  ,'o 8]-*:(0 (4.12) 

so that A(q)=R(q)E(q)=l follows. 
In this fashion, we obtain the Lie algebra of 91, which now reads 

W O ,  L11=0 [Lo, &I=iJIL, [LI. &]=if& (4.13) 

as well as the generalized Heisenberg commutators of the left quantum-kinematic 
model of PI, given by 

[Qo,bl=ifi [Q', Lo1 = 0 [Q', Lol=O (4 .14~~)  

[Q0,Li1=O [Q', L,] = ih [Qz, L11=0 (4.146) 

[ Qo, Lz] = -ihQ' [Q', &] = -ifiQo [Q2, &I =ihy-'(@). (4.14~) 

We note that the commutators obtained in (4 .14~)  and (4.146) are canonical (as they 
must be indeed), while the commutation relations shown in (4.14~) are new. 

The Lie algebra (4.13) has just one traditional invariant operator; namely, the 'mass 
square' Casimir operator 

W=G-L?. (4.15) 
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In the physical interpretation of the formalism, this invariant operator yields the 
Hein-Gordon equation: Wlt,hm)= m2c21&) (which corresponds to a super-selection 
rule in &"(PI)). The important point to remark is that in the traditional approach to 
PI(1, l )  one obtains the theory of the Klein-Gordon equation, and nothing else. 

However, the complete realm of the quantum-kinematic theory of @.(1,1) is much 
broader than that ofthe traditional theory, because (once the group has been quantized) 
by means of the adjoint representation (4.12) one obtains three basicinvariant operators, 
instead of only one. In effect, within the left regular representation of PI, these are 
given as follows: 

%(Q; U =  Y(Q')(Lo- QZLA (4.16~) 

~ RdQ; L ) = y ( Q 2 ) ( L ~ - Q Z L o )  (4.16b) 

R d Q ;  L)  = Q'Lo+Q'Li+Lz. (4.16~) 

Interestingly, the invariant operators R, ,p=O,  1, are obtained from the two- 
momentum operators Lp by means of a quantized Lorentz transformation; i.e., R,, = 
AL(Qz)Lv. On the other hand, R2 appears as a kind of total pseudo-Euclidean 'angular 
momentum' operator, related to the Lorentz hyperbolic 'rotation' in the two- 
dimensional Minkowski plane. Of course, these operators satisfy the right Lie algebra 
of Pt. Moreover, one has 

(4.17) 

Hence, one can 'diagonalize' this scheme in several ways. For instance, either ( U )  

using the fact [&, R I ]  = 0, or else ( b )  using [ W, RJ = O .  One thus reduces the left 
regular representation of Pi( by means of the corresponding superselection rules) into 
physically meaningful Hilbert subspaces, which one hopes to interpret properly. The 
quantum kinematic invariants of 91 are first-order differential operators, and further- 
more the formalism of 9; quantum-kinematics is automatically relativistic. (Work is 
in progress conceming this most interesting quantum-kinematic toy model: the super- 
selection rules {Ro ,  R,} yield the quantum-kinematic theory of the Dirac equation in 
(1 + 1) dimensions; while, of course, { W, Rz} yield the Klein-Gordon theory.) 

After these prolegomena, we are ready to proceed with the ladder operator formal- 
ism of P$(l,  1). The inverse transport matrices of the group are given by 

~ 

and 

w = LE - L: = R: - R: . 

-: q -[ 0 1 g] E:(.)=[ ': gj. (4.18) 
R O -  0 

Y 2 d  7%' Y O Y  
Hence E(q)=det[~~(q)]=yZ(qZ) yields [ln~(q)].,=O,forp=O, 1, and [1nE(q)lt= 
2y2(q2)qz; therefore from (3.19), after a few manipulations, we obtain 

(4.19) 

which are quite familiar indeed (cf. (4.14)) and we also get the operators 

(4.20a) 

(4.20b) 
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which are non-trivial. In effect, these operators satisfy the following commutation 
relations: 

[$,r2,]=0 [$, &] = 0 [r?l,2z]=o (4 .21~)  

[ c i 0 , l q ] = O  [60,(i:]=0 [a^,, $1 = 0 (4.21 b )  

[a ,̂,, 8 9  = r [&, 41 = I [&,a^:]=r (4.21~) 

as the reader can check. 
As we have already remarked, by taking bilinear products of these intrinsic ladder 

operators (in the well known manner) one can construct interesting operators that 
satisfy for instance the SU(2) and SU(3) algebras. The transformation law of the 
intrinsic generators of these SU( n) algebras (n = 2,3) under (homogeneous and 
inhomogeneous) two-dimensional Lorentz transformations are quite involved, 
however, and they should be analysed carefully. Anyhow, they do not yield (in a direct 
fashion) Lorentz invariant intrinsic Lie algebras which could bear an immediate 
physical interpretation in the present model. Here we shall leave this subject as an 
open problem. 

Nevertheless, there is an instance of an intrinsic Lorentz invariant algebra that 
arises rather naturally within the quantum-kinematic theory of 9:(1,1); this is the 
algebra of the group SU(1,l). To see this feature, we have to consider the kinematics 
of do and Cil . In order to obtain the kinematics of the canonical ladder operators, in 
general, one needs to use the following transformation laws: 

UZ(q)Q“U&)=g“(q; Q) (4.22) 

UL(q).LUL(q) = A%q)L (4.23) 

where the Us denote the unitary operators of the left regular representation of the 
group. In this fashion, for the operators io and 6, (we keep & out of the game) 0r.e 
obtains the following kinematic laws under the (left) action of S’I(1,I): 

(4 .24~)  
1 

UL(q)&UL(q) = Y(q2)( ( io-qz8: )+E q0 

(4.24b) 
1 

UL(q)n^,Udq)= Y(qz)(a^,-qzzL)+- q1. 4 
Thus, if one defines the operators 

6 , = ( i o , l q  p=O,l (4.25) 
it follows 

(4.26) 

where A:(q2) is the 2 x 2  Lorentz matrix. This shows that b” and 6”’ behave as 
contravariant vector-operators under homogeneous Lorenp transformations (i.e. q” = 
0).  This result makes the theory of the operators 6, and b: an interesting endeavour. 
For instance, we can define the following set of three Lorentz invariant operators 
within the 91(1,1) quantum kinematic model: 

~,=~(b^’6:+6:6,)=4(rl~r2,-a^:a^,) (4.27a) 

K+=~6~+~=S(n^LaL-a^,a^,) (4.276) 

K-=$’%,, = f ( & a ^ O - a ^ : a ^ : )  (4.27~) 

1 UI(q)6”UL(q) =A:(q*)b^’+- q’ a 
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and thus a few algebraic steps (cf (4.21))~ yield 

[ K o , K + l = K +  [KO, K-] = -K- [K+,  K-]= -2Ko (4.28) 

which is precisely the well known Lie algebra SU(1, l), often used in particle physics. 
Now, without going into the possible physical interpretation of the multiplets 

belonging to this intemal symmetry SU(1,l) algebra, it seems interesting to discuss 
the strncture of the SU(1,l) multiplets pertaining to this model..We next briefly develop 
this issue. 

It is well known that the quadratic operator (Perelomov 1986) 

9’ = Kg - f[ K+ , K-I+ (4.29) 

is the Casimir operator of the Lie algebra (4.28). In the present case, this invariant 
operator may be cast in the following manifestly Lorentz scalar form 

X2= a(&”%:&,+ I)(&”Q6p - I )  (4.30) 

where &ILY is the two-dimensional Levy-Civit6 symbol (i.e. = e” = 0, eo’ = -E’’ = 1). 
Since X2 is not a multiple of the identity, it foilows that the representations we are 
going to build in this model are not irreducible, sensu stricto. However, as we shall 
see, they correspond in a simple manner to one of the two equivalent discrete series 
of representations of the SU(1,l) algebra. Indeed, let us solve the eigenvalue problems 

(4.31a) 

(4.31b) 

where the eigenvalue spectra will be given by: k = 1,2,3 . . . and v = 0,1,2, . . . ; and 
where J, denotes a remaining degree of freedom in the definition of the eigenkets 
Ik, U; $)E %(PI). (Our notation differs slightly from the usual one (cf Perelomov 1986) 
in a simple manner; i.e. here we set Ik, v)= [ K ,  v) (of the standard notation), and we 
take k z 2 K - l  (with ~ = l , $ ,  2, $, ...), where p is defined as P = K + Y  (with v =  
0, 1 , 2 . .  . ). Of course, this change of notation is recommended by a mere inspection 
of the form of the Casimir operator in (4.30).) 

Now, the explicit forms of IC2 and &, as differential operators acting on (qo, 4 ’ )  
are obviously rather formidable, so we follow a different approach in order to solve 
(4.31). First, we observe that 

X’lk; v; $)=:(k’-l)Ik, v, $) 

Glk v; J,)=i(k+2v+l)lk, v; $) 

(4.32) 

(4.33a) 

(4.336) 

(4.34) 

(4.35) 
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Furthermore, it is also easy to see that the set of eigenvectors {Ino. n , ;  $h (+,I)) <m} 
is a 'quasicomplete' ba$s, in the following sense: given any I + ) E % ( @ )  + , one can 
always find a function $non,(q*) such that 

I+)=ZZIno, n,;   non^. 
no nl  

1 

Indeed, is unique, and it is given by 

so that 

($I$)=ZZ($, $)no",- 
"0 "1 

necessarily holds. 
Thus, let us write, without loss of generality 

Ik v ) = I x  &+bo, nl). 
"0 nl 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(In the following manipulations we omit the '$-paraphernalia'.) In this fashion, using 
the expression (4.27~) for KO, one obtains almost immediately 

(4.40) 

(since n o # n , + k + 2 v + l j D , , , , . , = 0 ) .  Next we use the expression 

~ 6 ~ 6 ,  = aoul-aia: (4.41) 

to obtain 

(e*%;& * I ) / n o ,  n,)  

= (non,)1/21no-l, n, -  l)-((no+ 1)(nl+1))'/'/n0+ 1, n,+l)*/no, nl). 
(4.42) 

Then a rather lengthy (albeit standard) calculation yields the desired discrete series 
representations of the SU(1, l )  Lie algebra within X(9?+); namely, one obtains 

ea 
lk, v)= Nku Z [n1! (k+2u+ n,+l)!]-"zd&lnl+ k + 2 v + l ,  nl) (4.43) 

",=0 

where the coefficients d;;, have to satisfy the recursion relation 

(4.44) d"+l= n(n+k+2v+l )dE1+kd$  

Nkv = (k+2v+  l)!)''2&.kp. (4.45) 

with dip=  1, and Nk, is a normalization constant which we have defined as follows: 

Finally, we leave to the reader the task of introducing the '+-dependence' of these 
eigenkets, in order to obtain the most general expression of the lk, v; $) eigenvectors. 

This concludes the work on the canonical ladder operators and the SU(1,l)  intrinsic 
Lorentz invariant Lie algebra of P$(l, 1) quantum kinematics in this paper. 
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5. Concluding remarks 

In equations (4.27) and (4.28) we face a nice example of an intrinsic Lorentz invariant 
non-compact Lie algebra, arising within the @'i(l, 1) quantized theory, which could 
be interpreted as an intemal symmetry of the model, without recourse to any SU( 1 , l )  x 
@'i(l, 1) scheme whatsoever (whether direct or semidirect). Of course, the physical 
interpretation of the multiplets belonging to this internal symmetry SU(1,l) algebra 
(i.e. equations (4.43)-(4.45)), requires the previous knowledge of the quantum- 
kinematic theory of 9l(l, 1) acting as the group of external symmetries of elementary 
systems in flat spacethe; that is, it requires the previous quantum-kinematic deductions 
of the Dirac equation and of the Klein-Gordon equation, as well as of their propagation 
kemels, in (1 + 1)-dimensions. This task will be tackled in forthcoming papers. 

This intrinsic SU(1,l) symmetry structure may play an interesting role in the 
'elementary particle' toy models one expects to obtain from quantizing the Poincari 
group in (1 + 1)-dimensions. For instance, as is indeed well known from the history 
of contemporary elementary particle physics (Dyson 19661, the year 1965 opened with 
various attempts at a theory incorporating a non-trivial (semi-direct) product of the 
group of intemal symmetries and the Poincar6 group of extemal symmetries for 
hadrons. (One thus expected to remove the mass degeneracy of the internal multiplets, 
as was the case of the Gell-Mann Okubo 'old-fashioned' SU(3) symmetry for strong 
interactions. The direct product is unable to perform this task.) SU(6), and even U(12), 
was favoured as the internal symmetry group of hadrons in most of these papers. These 
attempts, however, mixed intemal SU(6) degrees of freedom and spin, in a similar 
manner as in Wigner's SU(4) theory of nuclear supermultiplets (Wigner 1937). Mean- 
while, another series of papers appeared at the same time, in which severe mathematical 
inconsistencies were found in these theoretical attempts. Furthermore, rigorous 
theorems were proved to the effect that any such group combination must divide into 
a trivial direct product of the two (intemal and extemal) symmetry structures. (See 
Dyson 1966, and papers reproduced therein.) Since then these ambitious working 
frames have been forgotten. 

Of course, there have been several major developments in elementary particle 
physics since the 1960s; especially as consequences of the establishment of gauge field 
theories. (For more recent literature on the progress made in deriving or explaining 
the symmetries of the laws of nature in modem physics, see Froggatt and Nielsen 
1991, and works reproduced therein.) We now have the standard model, and there 
seems to be general agreement about the origin of mass spectra in tems of spontaneous 
symmetry breakdown mechanism. Hence, the point to remark is that these developments 
put us in a rather tighter position today than was the case about 30 years ago. Moreover, 
many facets of these developments are well established experimentally, and therefore 
any new proposed theory must take them into account, and even attempt to go beyond 
them, rather than just replace them by another model. It is clear that these facts bring 
to the fore a lot of significant questions that would have to be answered before any 
new relativistic quantum formalism could arouse the interests of high-energy 
theoreticians today. This is plainly so. 

Nevertheless, the importance must be stressed of the fact that Lie groups can be 
quurztized, in a mathematically consistent fashion and quite generally indeed; i.e. 
whether they are Abelian or not, whether compact or non compact. This fact may 
become of the utmost importance for the future of quantum theory, because it throws 
new light upon that mysterious trick called 'quantization' (detaching it completely 

. 
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from many rather obscure philosophical questions, concerned mainly with the use and 
meaning of the ‘correspondence principle’) (Bacry 1988). Instead, this fundamental 
idea of quantum mechanics may be transformed into a well defined and general Lie 
group-theoretic notion. Thus, non-Abelian quantum kinematics ( c a u s e  1985) offers 
a new perspective to look upon the notion of ‘quantization’, as well as to consider the 
very processes that have been used hitherto to build up reasonable quantum models 
of microphysical systems (Krause 1986,1988). In this sense, it must be borne in mind 
that the usual ‘canonical quantization’ procedure is not a universal recipe (Komar 
1971). As a matter of fact, under the present perspective, canonical quantization is 
nothing but a special case ofAbelian quantum kinematics (as applied to the noncompact 
groups of rigid translations acting on Cartesian scaffoldings) (Weyl 1931). 

In one way or another, these issues permeate all those rather successful models 
and/or mechanisms of today’s high energy physics mentioned above. It is quite clear 
that one must not expect to answer all the pertinent questions (posed by these models) 
by just one stroke of luck. Rather, long and hard step-by-step work will be needed to 
this end. Nevertheless, there are several good reasons to expect that a complete and 
consistent non-Abelian quantum theory is possible to achieve, as a direct and simple 
group-theoretic generalization of the present quantum formalism. Moreover, it is 
perhaps urgently needed as a new theoretical tool in the real of elementary particle 
physics. 

So as an instance of this possibility, and in the light of the results presented in this 
paper, it seems plausible to conjecture that the quantum-kinematic theory of the 
Poinark group can bring under a completely new insight the old and most intriguing 
(albeit still unsolved) problem of the relations between the internal multiplets and the 
external relativistic symmetries of elementary particles and of the origin of their mass 
spectra. At the risk of being perhaps overly optimistic, the author deems this conjecture 
worthy of much further research. 

Finally, it should be made clear that the interest of the generalized boson annihila- 
tion and creation operators, introduced in this paper, for Lie group theory and 
mathematical physics in general, is quite independent of this particular conjecture. 
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